$\mathbf{celeb}_{r}ecognition Documentation$ Release main

Contents

1	Celebrity Recognition	3			
	1.1 Basic working of the algorithm	3			
2	Installation 2.1 PyPI package	5			
	2.1 PyPI package	5			
3	Using pip pakcage				
4 Create your own celeb model					
5	Predictions				
	5.1 Model predictions in jupyter	11			
	5.2 Model predictions in python	11			
	5.3 Sample image output				
6	Additional ways to use	13			
	6.1 Binder	13			
	6.2 Google Colab	13			

Contents:

Contents 1

2 Contents

Celebrity Recognition

Model to recognize celebrities using a face matching algorithm.

Model is based on a dataset of around 6000 images of 60 celebrities (100 each).

1.1 Basic working of the algorithm

- Face detection is done using MTCNN face detection model.
- Face encodings are created using VGGFace model in keras.
- Face matching is done using annoy library (spotify).

Installation

• Run pip install -r requirements.txt to install all the dependencies (preferably in a virtual environment).

2.1 PyPI package

- $\bullet \ \ To \ ensure \ you \ have \ all \ the \ required \ additional \ packages, \ run \ \texttt{pip} \ \ \texttt{install} \ \ -\texttt{r} \ \ \texttt{requirements.txt} \ first.$
- To install pip package, run:

```
# pip release version
pip install celeb-detector
# also install additional dependencies with this (if not installed via_
requirements.txt file)
pip install annoy keras-vggface keras-applications
# Directly from repo
pip install git+https://github.com/shobhit9618/celeb_recognition.git
```

• If you are using conda on linux or ubuntu, you can use the following commands to create and use a new environment called celeb-detector:

```
conda env create shobhit9618/celeb-detector conda activate celeb-detector
```

This will install all the required dependencies. To ensure you are using the latest version of the package, also run (inside the environment):

```
pip install --upgrade celeb-detector
```

Using pip pakcage

• For using my model for predictions, use the following lines of code after installation:

This returns a list of dictionaries, each dictionary contains bbox coordinates, celeb name and confidence for each face detected in the image (celeb name will be unknown if no matching face detected).

• For using your own custom model, also provide path to json and ann files as shown below:

```
import celeb_detector
img_path = 'sample_image.jpg'
ann_path = 'sample_index.ann'
celeb_map = 'sample_mapping.json'
celeb_detector.celeb_recognition(img_path, ann_path, celeb_map)
```

• For creating your own model (refer next section for more details on usage) and run as follows:

```
import celeb_detector
folder_path = 'celeb_images'
celeb_detector.create_celeb_model(folder_path)
```

Create your own celeb model

- Create a dataset of celebs in the following directory structure: A root folder (say celeb_images), inside this should be the folders corresponding to each of the celebs inside which would be the individual pics of the celebs.
- Each folder name will be considered as the corresponding celeb name for the model (WARNING: Do not provide any special characters or spaces in the names).
- Make sure each image has only 1 face (of the desired celebrity), if there are multiple faces, only the first detected face will be considered.
- Provide path to the dataset folder (for example, celeb_images folder) in the create_celeb_model.py file.
- Run create_celeb_model.py file.
- Upon successful completion of the code, we get celeb_mapping.json (for storing indexes vs celeb names), celeb_index.ann (ann file for searching encodings) and celeb_name_encoding.pkl files (for storing encodings vs indexes for each celeb). (WARNING: You need to provide paths for storing each of these files, default is to store in the current directory)

Predictions

5.1 Model predictions in jupyter

- Provide paths to celeb_mapping.json and celeb_index.ann files in celeb_recognition.ipynb file. If you want to try my model, ignore this step.
- Run all the cells in the celeb_recognition.ipynb file, the final cell will provide widgets for uploading images and making predictions (this will also download the necessary model files).
- NOTE: celeb_recognition.ipynb is a standalone file and does not require any other files from the repo for running.

5.2 Model predictions in python

- Provide paths to celeb_mapping.json and celeb_index.ann files in celeb_recognition.py and celeb_utils/celeb_utils.py files. If you want to try my model, ignore this step.
- Run celeb_recognition.py file, provide path to image in the file.
- Output includes a list of the identified faces, bounding boxes and the predicted celeb name (unknown if not found).
- It also displays the output with bounding boxes.

5.3 Sample image output



Fig. 1: Image

Additional ways to use

6.1 Binder

You can run a binder application by clicking the following link:

You can also launch a voila binder application (which only has widgets for image upload and celeb prediction) by clicking here.

6.2 Google Colab

To open and run celeb_recognition.ipynb file in google colab, click the following link: